Multi-View Point Cloud Kernels for Semi-Supervised Learning
نویسندگان
چکیده
In semi-supervised learning (SSL), we learn a predictive model from a collection of labeled data and a typically much larger collection of unlabeled data. These lecture notes present a framework called multi-view point cloud regularization (MVPCR) [5], which unifies and generalizes several semi-supervised kernel methods that are based on data-dependent regularization in reproducing kernel Hilbert spaces (RKHS). Special cases of MVPCR include co-regularized least squares (CoRLS) [7, 3, 6], manifold regularization (MR) [1, 8, 4], and graph-based semisupervised learning. An accompanying theorem shows how to reduce any MVPCR problem to standard supervised learning with a new multi-view kernel.
منابع مشابه
A Kernel for Semi-Supervised Learning With Multi-View Point Cloud Regularization
In semi-supervised learning (SSL), we learn a predictive model from a collection of labeled data and a typically much larger collection of unlabeled data. These lecture notes present a framework called multi-view point cloud regularization (MVPCR) [5], which unifies and generalizes several semi-supervised kernel methods that are based on data-dependent regularization in reproducing kernel Hilbe...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملLearning with Low-Quality Data: Multi-View Semi-Supervised Learning with Missing Views
The focus of this thesis is on learning approaches for what we call “low-quality data” and in particular data in which only small amounts of labeled target data is available. The first part provides background discussion on low-quality data issues, followed by preliminary study in this area. The remainder of the thesis focuses on a particular scenario: multi-view semi-supervised learning. Multi...
متن کاملPairwise Constraint Propagation on Multi-View Data
This paper presents a graph-based learning approach to pairwise constraint propagation on multi-view data. Although pairwise constraint propagation has been studied extensively, pairwise constraints are usually defined over pairs of data points from a single view, i.e., only intra-view constraint propagation is considered for multi-view tasks. In fact, very little attention has been paid to int...
متن کاملKernel Selection for Semi-Supervised Kernel Machines
Existing semi-supervised learning methods are mostly based on either the cluster assumption or the manifold assumption. In this paper, we propose an integrated regularization framework for semi-supervised kernel machines by incorporating both the cluster assumption and the manifold assumption. Moreover, it supports kernel learning in the form of kernel selection. The optimization problem involv...
متن کامل